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Abstract—Genetic Programming is used to generate a 

solution that can classify localized muscle fatigue from filtered 

and rectified surface electromyography (sEMG). The GP has 

two classification phases, the GP training phase and a GP 

testing phase. In the training phase, the program evolved with 

multiple components. One component analyzes statistical 

features extracted from sEMG to chop the signal into blocks 

and label them using a fuzzy classifier into three classes: Non-

Fatigue, Transition-to-Fatigue and Fatigue. The blocks are then 

projected onto a two-dimensional Euclidean space via two 

further (evolved) program components. K-means clustering is 

then applied to group similar data blocks. Each cluster is then 

labeled according to its dominant members. The programs that 

achieve good classification are evolved. In the testing phase, it 

tests the signal using the evolved components, however without 

the use of a fuzzy classifier. As the results show the evolved 

program achieves good classification and it can be used on any 

unseen isometric sEMG signals to classify fatigue without 

requiring any further evolution. The GP was able to classify the 

signal into a meaningful sequence of Non-Fatigue→Transition-

to-Fatigue→Fatigue. By identifying a Transition-to Fatigue 

state the GP can give a prediction of an oncoming fatigue. The 

genetic classifier gave promising results 83.17% correct 

classification on average of all signals in the test set, especially 

considering that the GP is classifying muscle fatigue for ten 

different individuals.  

I. INTRODUCTION 

 This research investigates the ways in which Genetic 

Programming (GP) can be utilized to detect and predict 

localized muscle fatigue during isometric contractions in the 

bicep branchii. The study also explores the idea of 

classifying and hence predicting muscle fatigue by 

identifying a transition state. Genetic Programming (GP) has 
been used to automate this process. 

 Previous studies on muscle fatigue in isometric 

contraction have established typical sEMG readings when 

conducted in controlled settings. Changes in sEMG 

amplitude and centre frequency were studied [1]. That study 

found a decrease in the centre frequency of the spectrogram 
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of all the muscle groups. Research in this field also shows 

that a development in muscle fatigue correlates with changes 

in amplitude and median frequency (MDF) [2].  
 Reference [3] tried to design more comfortable car seats 

by identifying and classifying sEMG signals using data 

mining techniques and statistical analysis to determine 

sEMG localized muscle fatigue. Reference [4] used artificial 

neural networks to detect muscle activity whereby wavelet 

coefficients are proposed as features for identifying muscle 

fatigue. Reference ‎[5] proposed an sEMG pattern classifier 

of muscular fatigue. The adaptation process of hyperboxes 

of fuzzy Min-Max neural networks has shown a significant 

improvement in recognition performance. 

 There are three main aims of this study. Firstly, we want 

to understand the relationship between statistical features 
and the nature of different muscle states. This has potential 

to help researchers to better understand the nature of muscle 

fatigue and develop fatigue detection and prediction 

algorithms. Secondly, the study investigates offline 

processing of the surface electromyography (sEMG) signal 

to provide an early warning before the onset of fatigue. 

Finally, the limitations and the capabilities of using GP for 

the mentioned domain will be scrutinized in order to 

accelerate the evolution process and optimize the quality of 

the evolved solutions.  

II. METHODS AND MATERIALS 

 In the first part of this research an experimental study was 

conducted to record sEMG of localized muscle. The second 

part involved using the GP to classify fatigue of the 

localized muscle. The data recorded were utilized to 

investigate the performance of the proposed technique. The 

aim of the experiments was to measure the classification 

accuracy of the GP with different sEMG signals to give a 

generalized solution. 

A  sEMG Recording and Preprocessing 

 The data were collected from ten healthy subjects (mean 

age 27.5 +/- 3.6 yr, non-smoker, athletic background). The 

ten participants were willing to reach physical fatigue state 

but not psychological one. The participants were seated on a 

preacher curl machine to insure stability and biceps 
isolation.  

 

Steps in the test bed set up: 

 sEMG electrodes were placed on the‎ participant’s‎

Biceps branchi belly to acquire sEMG reading. 

 Goniometer was placed on the side of the arm to 

measure the elbow angle. 
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 The participant had a display placed in front of them 

which indicates the angle of the arm.  

 The weight was handed to the participant at 90 deg 

elbow angle. 

 Participants were asked to maintain the 90 deg angle. 

 Participants stopped when they reach total biceps 
fatigue.  

 All participants carried out isometric exercises with 

40% Maximum Voluntary Contraction (MVC). 

 

 The myoelectric signal was recorded using two channels; 

Double Differential (DD) recording equipment at 2000Hz 

sampling rate. The sEMG signals acquired from the 

experiment went through a rectification and filtering 

process. The signals were filtered with a dual pass 

Butterworth filter, with the fifth order band positioned 

between 1 and 500Hz. The Goniometer readings were also 
recorded simultaneously. The reading of the Goniometer 

was then correlated with the sEMG signal to insure that 

fatigue resides within the sEMG. The Goniometer provided 

a reliable indication on the development of fatigue as it was 

difficult for the participants to maintain 90deg elbow angle 

throughout the trial . 

 For each of the ten participants three trials were carried 

out, providing 30 trials in total. There was a resting period of 

one week between each of the three trials. 

 

B GP Set Up 

 Of the 30 sEMG signals (trials) recorded, we used 10 

trials for the training set, one trail from each subject. Thus, 

we allowed the GP to find common features for the ten 

different participants and built a generalized classification 

model. The GP experiments that are presented here were 

completed using:  

 Population of size 100. 

 Maximum number of generations 30. 

 One point crossover with probability of 90%. 

 Mutation with probability 5%. 

 Reproduction with probability 5%. 

 Tournament selection of size 5.  

 Maximum tree depth of 10. 

 

 Since GP search is stochastic, the performance of our 

approach has been measured through 20 independent runs, 

each of which trained the GP and used the output of the 
training to classify the muscle state of 20 sEMG signals (2 

signals for each participant). The aim was to obtain a good 

classification ratio for each participant and a general 

classification algorithm that performs well on average for all 

participants. Each GP run resulted in one chopper tree and 

two feature extraction trees, which will be explained in the 

following section.  

C  GP algorithm 

 The approach to implement GP as a way to classify 

localized muscle fatigue based on sEMG’s‎ statistical‎

features works as follows: 

 

 Spotting regularities within the sEMG and to associate 

them to one of three classes: i) Non-Fatigue, ii) 

Transition-to-Fatigue, and iii) Fatigue. Each class 

indicates the state of the muscle at a particulate time. 

 The system works in two main stages:  

o Training: the algorithm learns to match 

different‎ signals’‎ characteristics with different 

classes. 

o Testing: here the algorithm applies what it has 

learnt to classify unseen data. 

 

 In the training phase, the algorithm processed filtered 

sEMG signals and performed two major functions: 

 Segmentation of the signals based on their 

statistical features. 

  Classification of the identified segments based on 

their types (i.e. Non-Fatigue, Transition-to-Fatigue, 

or Fatigue). 

For these tasks, the GP has been supplied with a language 

that allowed it to extract statistical features from sEMG. The 

selection of the primitive set, as shown in Table I, was 

carefully made to avoid unnecessary growth in the search 

space, while at the same time ensuring that it was rich 

enough to express the solution. 
 

TABLE I 

THE PRIMITIVE SET OF THE ALGORITHM 

Primitive Set Input 

Median, Mean, 

Average deviation, 

Standard deviation, 

Variance, RMS, Skew, 

Kurtosis, Entropy 

 

Vector of real number 

 

+, -, /, *, Sin, Cos, Sqrt Real Number 

 

 The algorithm started by randomly initializing a 

population of individuals using the ramped half-and-half 

method [6]. In particular, each individual was composed of 
one chopper tree (explained in section C.i), and two feature-

extraction trees (explained in section C.ii). In the testing 

phase, the unseen data (test data set) goes through the three 

evolved components (Chopper tree and two feature 

extraction trees) without using the fuzzy label classifier 

(explained in section C.iii). The chopper tree segments the 

signal then passes the outcome to the feature extraction trees 

where they are classified based on the majority class labels 

of their k-nearest neighbors. In the majority voting, each 

nearest neighbor is weighted based on its distance from the 

newly projected data point. So, w = 1 / distance (xi, zi,). 
Where xi is the nearest neighbor and zi is the newly 

projected data point. 

C.i  Chopper Tree 

 The chopper tree worked by chopping the sEMG signals 

in the training set into meaningful segments based on their 



  

statistical differences. This only occurred in the training 

phase of the algorithm so that it learned to match statistical 

characteristics with particular muscle status. The algorithm 

labeled each block with one of the three identified classes 

based on the Fuzzy labeling classifier explained in section 

C.iii. A good chopper tree should be able to detect three 
types of blocks: Non- Fatigue, Transition-to-Fatigue, and 

Fatigue. The algorithm detected these blocks by isolating the 

boundaries between the non-fatigue and the fatigue with a 

transition-to-fatigue block which usually resided just before 

the end of the signal. 

 The algorithm moved a sliding window of size L over the 

given sEMG with steps of S samples. At each step the 

chopper tree was evaluated. This corresponded to applying a 

function, Fchopper , to the data under the window. The output 

of the program was‎a‎single‎number,‎λ,‎which‎is‎an‎abstract‎

representation of the features of the signal in the window. 

The algorithm then chopped the signal at a particular 
position if the difference between the λ’s in two consecutive 

windows was‎more‎than‎a‎predefined‎threshold‎θ.‎Thus, we 

could formalize this stage with the following pseudo code: 

 

Repeat 

if Fchopper (prevWindow) – Fchopper (currWindow) > θ then  

Chop  

else 

Move(S)  //slide the window by S steps.      (1) 

 

 Preliminary tests showed that an average sEMG signal in 
our set had 81.6% of non-fatigue, 4.26% transition-to-

fatigue and the remaining 14.14% was fatigue. These 

numbers were varying from one individual to another. 

However, what was common among signals was that the 

smallest portion of the signal represented transition-to-

fatigue while the largest portion was non-fatigue. Thus, the 

chopper tree should divide the signal into the three types of 

blocks with both meaningful sequence (i.e., Non-Fatigue →‎

Transition-to-Fatigue→Fatigue). Chopper trees that violate 

these conditions are discouraged by penalizing their fitness 

value (see section C.iv).  

C.i i Feature-Extraction Tree 

 The main job of the two feature-extraction trees in our GP 

representation was to extract features (see table 1) from the 

blocks identified by the chopper tree and to project them into 

a two dimensional Euclidian space, where their classification 

took place later. Each feature-extraction tree represented a 
transformation formula which mapped the original feature 

set into a single value output, which could be considered as a 

composite, higher-level feature.  

 We used a standard pattern classification approach on the 

outputs produced by the two feature-extraction trees to 

discover regularities in the training data signals. In principle, 

any classification method can be used with our approach. It 

was decided to use the K-means clustering to organize 

blocks (as represented by their two composite features) into 

groups. With this algorithm, objects within a cluster were 

similar to each other but dissimilar from objects in other 

clusters. The advantage with this approach was that the 

experimenter did not need to label the training set. Also, the 

approach did not impose any constraints on the shape of the 

clusters. Once the training set was clustered, we could use 

the clusters found by K-means to perform classification of 

unseen data. 

 Instead of forcing the clustering algorithm (the K-means 
in our case) to group segments based on their raw statistical 

features directly, we let evolution optimize two features-

extractions trees and used them to project the training 

segments on a two-dimensional Euclidian space. If the trees 

were successfully evolved, K-means would then be able to 

group together blocks based on their raw statistical features, 

which would have otherwise been grouped separately. The 

GP might invent new features that a human finds impossible 

to discover.  

 

C.iii Labeling the Training Set 

 There are several ways to recognize muscle state from the 

sEMG signal. In ‎[7]-‎[9] the authors argued in favor of the 

idea of counting the number of times the amplitude of the 

signal crosses the zero line based on the fact that a more 

active muscle would generate more action potentials, which 

overall causes more zero crossings in the signal. However, at 
the onset of fatigue the zero crossings will drop drastically 

due to the reduced conduction of electrical current in the 

muscle.  

 In our case the given sEMG signals in the training set 

were unlabelled. Therefore, we needed a mechanism to label 

the outcome of the chopper tree to indicate the muscle state 

at a particular time (i.e., non-fatigue, transition-to-fatigue or 

fatigue). Here, we used the fuzzy classifier that had two 

inputs: 

 Angular position of the arm provided by the 

Goniometer (0 to 180 degrees). 

 Zero Crossings of the sEMG data. 
 

The above fuzzy classifier inputs when used in conjunction 

was found to greatly reduce incorrect labeling of the training 

data sets. Both inputs were used to define a 6 rule zero order 

type-1 fuzzy classifier; using both triangular and trapezoidal 

antecedents and product inference. Table II below defines 

the rule base. 

 
TALE II 

RULE BASE 

 

Rule Base: Goniometer Fatigue (GOF) ,(GONF) Goniometer Non-

fatigue,(ZCF) zero crossing fatigue,(ZCTF) zero crossing transition-to-

fatigue,(ZCNF) zero crossing non-fatigue. 

 
 As with all fuzzy classifiers only a single label was 

chosen as the final output; the rule with the greatest firing 

strength. In the current algorithm only the label and not the 

rule firing strength was used with training the GP and could 



  

be considered as a hard classifier. In the experiment the 

subjects were instructed to maintain a Goniometer angle of 

90 degrees until complete fatigue. Thus the Goniometer 

angle of 85 degrees and below was used to generate the 

input fuzzy sets where the trapizoidal set is defined as a four 

point array, e.g. (GOF), and the triangle set is defined as 
three point array, e.g. (ZCTF), as follows: 

 

GOF   [0,0,
 𝐺 𝑖 𝑛−1
𝑖=0

𝑛
 , 
 𝐺 𝑖 𝑛−1
𝑖=0

𝑛
+ √ (𝐺 𝑖 −

 𝐺 𝑖 𝑛−1
𝑖=0

𝑛
)2𝑛−1

𝑖=0  ]  

where 𝐺 𝑖  is less than 85.             (2) 

 

GONF [
 𝐺 𝑖 𝑛−1
𝑖=0

𝑛
 ,  

 𝐺 𝑖 𝑛−1
𝑖=0

𝑛
+ √ (𝐺 𝑖 −

 𝐺 𝑖 𝑛−1
𝑖=0

𝑛
)2𝑛−1

𝑖=0 ,180,180] 

where 𝐺 𝑖  is less than 85.             (3) 

 

ZCF [0,0,
 𝑍𝐶 𝑖 𝑛−1
𝑖=0

𝑛
 , 
 𝑍𝐶 𝑖 𝑛−1
𝑖=0

𝑛
+ √ (𝑧𝐶 𝑖 −

 𝑍𝐶 𝑖 𝑛−1
𝑖=0

𝑛
)2𝑛−1

𝑖=0  ]     (4) 

 

ZCTF [
 𝑍𝐶 𝑖 𝑛−1
𝑖=0

𝑛
+ (   𝑧𝐶 𝑖 −

 𝑍𝐶 𝑖 𝑛−1
𝑖=0

𝑛
 
2

𝑛−1
𝑖=0 )/2,   

 𝑍𝐶 𝑖 𝑛−1
𝑖=0

𝑛
+

√ (𝑧𝐶 𝑖 −
 𝑍𝐶 𝑖 𝑛−1
𝑖=0

𝑛
)2𝑛−1

𝑖=0 ,  
 𝑍𝐶 𝑖 𝑛−1
𝑖=0

𝑛
+ √ (𝑧𝐶 𝑖 −

 𝑍𝐶 𝑖 𝑛−1
𝑖=0

𝑛
)2𝑛−1

𝑖=0 +

   𝑧𝐶 𝑖 −
 𝑍𝐶 𝑖 𝑛−1
𝑖=0

𝑛
 
2

𝑛−1
𝑖=0 /2]             (5) 

 

ZCNF[
 𝑍𝐶 𝑖 𝑛−1
𝑖=0

𝑛
+     𝑧𝐶 𝑖 −

 𝑍𝐶 𝑖 𝑛−1
𝑖=0

𝑛
 
2

𝑛−1
𝑖=0  ,

 𝑍𝐶 𝑖 𝑛−1
𝑖=0

𝑛
+

√  𝑧𝐶 𝑖 −
 𝑍𝐶 𝑖 𝑛−1
𝑖=0

𝑛
 
2

𝑛−1
𝑖=0 +   𝑧𝐶 𝑖 −

 𝑍𝐶 𝑖 𝑛−1
𝑖=0

𝑛
 
2

𝑛−1
𝑖=0 /2,200,200] 

where 𝑍𝐶 𝑖  are all data points where the Goniometer is less 

than 85.                    (6) 

 

 Fig. 1 shows one of the signals after the fuzzy 

classification process. The fuzzy classifier correctly 

classified the signal into three different labels according to 

fatigue status.  

 
Fig. 1. Labels of a signal in the training set. 

Fatigue = blue, Non-Fatigue = red, Transition-to-Fatigue = green 

C.i v  Fitness Measures 

 The fitness function is an important component of a GP 

algorithm. This function evaluated the quality of the 
individuals and guided the evolution to uncover 

progressively improved solutions during an algorithm run. 

 The calculation of the fitness was divided into two parts. 

Each part contributed with equal weight to the total fitness. 

Firstly, the fitness contribution of the chopper tree was 

measured. Any contravention to these conditions was 

penalized, and thus, the evolution process would 

discriminate against them in the following generations.  

 The fitness of the chopper tree was determined by the way 

it aided the feature-extraction trees to project segments into 

grouped and separated clusters and penalized when required. 

This gives the function: 

 

fChopper =  ffeature-extraction + µ,            (7) 

 

where fFeature-extraction  is the fitness of the feature-extraction 

trees, and µ is the penalty values.  

 

 µ is a fixed value and applied whenever the chopper tree 

fails to divide the given sEMG signal into blocks (non-

fatigue/transition-to-fatigue/fatigue sequence). Thus, the 

algorithm discriminate these trees in the following 

generations.   
 Secondly,‎ the‎ subject’s‎ fitness‎ was classified using K-

means. K-means aided in evaluating the accuracy of the 

clustering by measuring cluster homogeneity and separation. 

To calculate the homogeneity of the clusters the algorithm 

counted the members of each cluster (see Fig. 2), where each 

data point represented a block of signals. The labels from 

each block were known in the labeling stage, hence we 

labeled the clusters according to dominant members.  

 

66.6% Non-Fatigue

16.5% Fatigue 

16.5% Transition-to-Fatigue

Fatigue

Non-Fatigue

Homogeneity Fitness = ( 42% Fatigue + 60% Transition-to-Fatigue + 66.6Non-Fatigue) / 3 

clusters = 56.6%

42% Fatigue 

28.5% Non-Fatigue

28.5% Transition-to-Fatigue

Transition-to-Fatigue

60% Transition-to-Fatigue

20% Non-Fatigue

20% Fatigue 

 
Fig. 2. Homogeneity of the clusters 

 
To calculate the homogeneity of the clusters we used the 

following function: 

fHomogeneity = 
K

CLH
K

i

i
1

)(

           (8) 

 

where H is the function calculating the homogeneity and CLi 

is the ith cluster. Furthermore, K represents the total number 

of clusters (three clusters in our case: fatigue, transition-

fatigue and non-fatiuge). 
 The Davis Bouldin Index (DBI) [10] was another mean 

used to decide cluster quality. DBI is a measure of the 

nearness‎of‎the‎clusters’‎members to their centroids and the 

distance‎ between‎ clusters’‎ centroids. This measure helped 

where clusters with objects far apart extended‎ the‎ cluster’s‎

boundary and could lead to less accurate classification of 

unseen objects. Also, clusters that overlap each other were 

not suitable, as ideal clusters were separated from each other 

and densely grouped near their centroids. DBI can be 

expressed as follows: 

 

CCLi is the centroid of the CLi
th cluster and n

CLid  the nth data 

member that belongs to the CLi
th cluster. In addition, the 



  

Euclidian distance between n

CLid and CCLi is expressed by the 

function be dis(dCLi , CCLi). Furthermore, K is the total 

number of clusters. Finally, standard deviation is denoted as 

std(). Then, 

DBI = 

 
),...,,(

)(),...,(

10

1
,

0
,

CLiCLCL

K

i

n
CLiCLiCLiCLi

CCCdis

dCdisdCdisStd
      (9) 

 

A small DBI index indicated well separated and grouped 

clusters. Therefore, we added the negation of the DBI index 

to the total feature extraction fitness in order to push 

evolution to separate clusters (i.e., minimize the DBI). It 

should be noted that the DBI here was treated as a penalty 
value, the lower the DBI the lower penalty applied to the 

fitness. Thus for, the feature extraction trees; fitness was as 

follows: 

 

ffeature-extraction = fHomogeneity  - DBI          (10) 

 

The total fitness of the individual was: 

 

f = (ffeature-extraction /2) + (fchopper /2)         (11) 
 

Therefore,‎ a‎ GP‎ individual’s‎ quality‎ was defined by its 

ability to identify muscle states from the sEMG signal and 

classify them correctly. 

 

C.v  Search Operators 

 Search operators in any GP algorithm are important as 

they guide the search through the search space to discover 

new solutions. We used the standard genetic operators; 

crossover, mutation and reproduction. These operators took 
the multi-tree representation of the individuals into account.  

 There were several options for applying genetic operators 

to a multi-tree representation. Firstly, we could apply a 

particular operator that has been selected to all trees within 

an individual. Alternatively, we could iterate over the trees 

in an individual and select a potentially different operator for 

each. Also, we could constrain crossover to occur only 

between trees at the same position in the two parents or we 

could let evolution freely crossover different trees within the 

representation. In preliminary research we tried all of these 

approaches and found that a good way to guide the evolution 

is as follows:  

the ith individual of the population is denoted as Ii and i
cT is 

the cth tree of individual i, where c  {chopper, feature-

extractorx, feature-extractory}. The algorithm selects an 

operator with a predefined probability for each i
cT .  

 

In the crossover the operator was chosen and a restriction 

was applied so that chopper trees could only be crossed over 

with chopper trees. However, the algorithm was able to 

freely crossover feature-extractions trees at any position. 

III. RESULTS 

The genetic program achieved the best population around 
generation 28 in all of the 20 independent runs after which 

the average best fitness reaches a plateau. Table III reports 

the best achieved hit rate (correct classification) for each test 

signal (A1 refers to trial 1 for subject A and so forth), as 

well the average hit rate in all runs. Also, the worst hit rate 

are presented to show the algorithm performance in its worst 

case. Moreover, standard deviations are presented to show 

stability of the evolved program through the 20 different 

independent runs.  

 
TABLE III 

SUMMARY OF THE PERFORMANCE OF 20 DIFFERENT GP RUNS 

  
 

 Table IV below defines the results for the best evolved 

individual when tested with A1 to J2 data sets.(Letters 

represent the subject and the number represent trials of that 

subject). This result highlights the promising potential of the 

GP when used for classifying sEMG signals. 
 

TABLE IV 

BEST GP RUN 

                 
        Fig. 3.: Visualized Illustration of GP Performance 

        in One of the Runs for Test Signal D1.    

            Fatigue = blue, Non-Fatigue = red, Transition-to- 
           Fatigue = green. 

 

 To simplify the results, Fig. 3 shows a visualized 

presentation of the algorithm performance in one of the test 

signals (D1) using the best evolved individual. The figure 

illustrates the difference between the actual fuzzy classifier 

output (a) and the prediction output of the GP (b). The figure 

shows the intervals where the algorithm failed and when it 

correctly classified the signal. Table IV shows that the hit 
percentage of this test was 87.8%. It can be noted that the 



  

detection of the transition-to-fatigue state can be used as a 

prediction mechanism for predicting fatigue. 

 The GP in all its 20 runs showed a repeated inclination to 

use some primitive functions than others (Table I showed all 

the primitive set that the GP was using). Fig. 4 below 

illustrates the average use of the primitive functions for the 
best evolved generation in all GP runs are shown. 

 
Fig. 4. Average Use of Primitive Functions for the best evolved generations.  

 

Comparing the GP results with typical EMG classification 

techniques and their accuracy rates [11] showed that the 

overall accuracy of the GP is promising. Table V shows the 

correct classification of all these techniques including the 

average of the best evolved GP shown previously in Table 
IV. 

 
Table V: Comparison of the GP with other EMG classification techniques 

   
 

The performance of the GP shows great potential in this 

study and it proved that it can be used to classify the sEMG 

with comparable performance to other techniques mentioned 

in table V.  

 

IV. CONCLUSION 

 The GP created a classifier which generally performs 

quite well in comparison to other techniques mentioned in 

Table V. Clearly the generation of a single classifier is a 

difficult task due to the stochastic nature of the sEMG 

signal. In some instances the GP classifier performs very 

well, as shown for the data set in Table IV.  

 Despite the low occurrence of the transition-to-fatigue in 

the training data (average of 6.44% of all the training sets) 
the GP was still able to identify transition-to- fatigue state 

with some accuracy using only a moderate primitive set. 

Additionally, the GP achieved one of our main goals which 

was to broadly classify the signal in the correct sequence of 

Non-Fatigue→Transition-to-Fatigue→Fatigue. 

 As we mentioned previously, our aim was to obtain a 

generic classifier that performs well on average of all signals 

in the test set. It should be noticed that the achieved results 

are promising, especially considering that the algorithm is 

classifying muscle fatigue for ten different individuals.  

 The combination of the primitive set that the GP uses 
corresponds to a solution that produces the ability to detect 

and predict muscle fatigue. This does not mean that they are 

the only reasons for producing good solutions. GP trees are 

known to be sensitive to its primitives (i.e. one node in the 

tree might have a large influence on the fitness). Thus, we 

can see the importance of these operations that are 

frequently used in detecting different muscle status. 

However, further investigation on each feature of the 

identified function set is required to measure their exact 

correlation. 

 The limitations of GP algorithms is that their evolved 

solutions are often difficult to interpret by humans, as they 
are complex and difficult to understand. There are many 

directions where we can further improve the performance of 

this technique. For example, a simple extension in the set of 

statistical function available in the primitive set. The fitness 

function could be tweaked to improve the classification 

accuracy and give better solutions.  
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