
Evolving Radial Basis Function Networks
via GP for Estimating Fitness Values

using Surrogate Models

Ahmed Kattan and Edgar Galvan

Abstract— In real-world problems with candidate solutions
that are very expensive to evaluate, Surrogate Models (SMs)
mimic the behaviour of the simulation model as closely as
possible while being computationally cheaper to evaluate. Due
to their nature, SMs can be seen as heuristics that can help to
estimate the fitness of a candidate solution without having to
evaluate it. In this paper, we propose a new SM based on Ge-
netic Programming (GP) and Radial Basis Function Networks
(RBFN), called GP-RBFN Surrogate. More specifically, we use
GP to evolve both: the structure of a RBF and its parameters.
The SM evolved by our algorithm is tested in one of the most
studied NP-complete problem (MAX-SAT) and its performance
is compared against RBFN Surrogate, GAs, Random Search
and (1+1) ES. The results obtained by performing extensive
empirical experiments indicate that our proposed approach
outperforms the other four methods in terms of finding better
solutions without the need of evaluating a large portion of
candidate solutions.

I. INTRODUCTION

Many real-world problems require experiments to run for
days, weeks or even months to complete due to the nature
of the problem. For instance, most engineering design prob-
lems need simulations to evaluate design objectives along
with constraints as function of design variables. Thus, it is
necessary to consider and simulate several scenarios. For
many of these problems, one single simulation could take
several hours, or even days to finish. As a result of this,
the simulation of several scenarios turns out to be almost an
impossible task to carry out.

Moreover, many optimisation problems are black-box
problems, i.e., problems of unknown class, and they are pos-
sibly mathematically ill-behaved (e.g., discontinuous, non-
linear, non-convex). Possible ways of dealing with such
optimisation problems include the use of a high-performance
computing technology with multi-threading programming, or
an approximation model that approximates a given objective
function.

Surrogate Models (SMs), also known as response surface
models, are approximation models, that mimic the behaviour
of the simulation model as closely as possible while being
fast surrogates for time-consuming computer simulations. In
a nutshell, SMs work by running simulations at a set of

Ahmed Kattan is with the Evolutionary Design and Optimisation Group,
Computer Science Department, Um Al-Qura University, Saudi Arabia and
Edgar Galvan is with the Distributed Systems Group, School of Computer
Science and Statistics, Trinity College Dublin, email: Ajkattan@uqu.edu.sa,
edgar.galvan@scss.tcd.ie.

points and fitting response surfaces to the resulting input-
output data. In this paper, we will refer to a solution in the
problem’s search space and its real-fitness value as a data-
point. In Section III, we further describe this.

Some commonly used approximation functions include:
Polynomial Regression, Artificial Neural Networks, Radial
Basis Function Networks (RBFNs) and Support Vector Ma-
chines [5].

There are some interesting works in the area of SMs. For
instance, Lim et al. [9] proposed a generalised surrogate-
assisted evolutionary framework for optimisation of problems
that are computationally expensive to evaluate. The authors
introduced the idea of employing several on-line local SMs
which are constructed using data points that lie in the vicinity
of an initial guess. The improved solutions generated by the
local search are used to replace the original individual(s). In
their work, the framework has been presented with single
objective optimisation and multi-objective optimisation.

Lian et al. [8] proposed an enhancement for the stan-
dard GA by using local surrogate search to expedite its
convergence. The model uses GA to generate a population
of individuals and rank them with a real function. Then, a
gradient-based local search is performed on the SM to find
new promising solutions. Both, the GA and local search are
alternatively used under a trust-region framework until the
optimum is found. The trust-region framework is used to
assure that the surrogate’s solutions are converging towards
the original problem.

More recently, Moraglio and Kattan [10] showed that SMs
can be naturally generalised to encompass combinatorial
spaces based in principle on any arbitrarily complex under-
lying solution representation by generalising their geometric
interpretation from continuous to general metric spaces. An
illustrative example is given related to Radial Basis Function
Networks (RBFNs), which can be successfully used as sur-
rogate models to optimise combinatorial problems defined
on the Hamming space associated with binary strings. The
authors illustrated the methodology with the well-known NK-
landscape problem.

These works are just few examples that show the potential
of SMs to be used as accurate approximation models. That
is, they can be seen as heuristics that can help to estimate
the fitness of a candidate solution without having to evaluate
it.

In this paper we take a step further on this direction and
propose a new SM that is obtained using Genetic Program-

ming (GP) [7], [12] and RBFN [1]. More specifically, GP has
been used to control the magnitude of the RBFs’ output in the
RBFN in such a way to minimise the surrogate’s prediction
errors (more of this is presented in Section II). Thus, the
goals of this paper are twofold:
• To improve standard RBFN surrogate model by using

GP to tune its parameters, and
• To show how SMs can successfully been used to evolve

solutions without the need of evaluating a large number
of candidate solutions.

This paper is structured as follows. In the following sec-
tion we describe standard Radial Basis Function Networks.
Section III describes our approach (i.e., evolving SMs via
GP and RBFNs). Section IV presents the experimental setup
used to conduct our experiments followed by results and
discussion, presented in Section V. Finally, Section VI draws
some conclusions.

II. RADIAL BASIS FUNCTION NETWORKS

There are a number of known approaches to learn a
function that belongs to a certain class of functions from
existing data-points 1 (i.e., finding a function in that class
that interpolates and best fits the data-points according to
some criteria). Some of these include Genetic Programming
(GP), RBFN Interpolation, Artificial Neural Networks and
Gaussian Process Regression (also known as Kriging) [2].

Gaussian Process Regression is a very powerful method
with a solid theoretical foundation, which not only can make
a rational extrapolation about the location of the global
optimum, but also gives an interval of confidence about the
prediction made. RBFN Interpolation is conceptually simpler
than Gaussian Process Regression and can extrapolate the
global optimum from the known data-points. In this paper,
we focus on RBFNs as surrogate models.

GP is a powerful method for approximating unknown
functions. Thus, in this work, we take advantage of this and
explore the possibility of improving SMs using GP to control
the accuracy of the RBFN.

A. RBFN Representation

Radial Basis Function Networks (RBFNs) can be seen
as a variant of artificial neural network that uses radial
basis functions as activation functions [1]. Typically, RBFN
consists of three layers: input, hidden, and output layer.
The relationship between the input and the hidden layer is
determined by the RBF activation function. The nodes in
the output layer usually perform a simple summation for the
linear weights of these activations. RBFNs have successfully
been used in function approximation, time series prediction,
and control [1].

A radial basis function (RBF) is a real-valued function
φ : Rn → R; its value depends only on the distance from
some point c, called centre, so that φ(x) = φ(‖xq − c‖).
The point c is a parameter of the function and the point
xq is the query point to be estimated. The norm is usually

1Data-point is the pair of solution and its real fitness value.

Euclidean, so ‖xq − c‖ is the Euclidean distance between c
and xq . Since we use a generalised RBFN (fully described in
[10]), the Euclidean distance has been replaced with a metric
distance that naturally encompass the GA representation of
our optimisation problems (details are presented later in
this section). There are several types of RBF functions,
including: Gaussian, Multiquadric, Inverse Quadratic and
Inverse Multiquadric. In this paper we use the Gaussian
functions of the form:

φ(x) = exp(−β‖xq − c‖2)

where β > 0 is the width parameter. Radial basis functions
are typically used to build function approximations of the
form:

y(x) = w0 +
N∑

i=1

wi φ(‖xq − ci‖) (1)

Thus, y(x) is used to approximate the real-objective func-
tion when evaluating an individual. The approximating func-
tion y(x) is represented as a sum of N radial basis functions,
each associated with a different centre ci, a different width
βi, and weighted by an appropriate coefficient wi, plus a
bias term w0. In principle, any continuous function can be
approximated with arbitrary accuracy by a sum of this form,
if a sufficiently large number N of radial basis functions is
used. The bias w0 can be set to the mean of the values of
the known data-points from the training set that are used to
train the surrogate model, or set to 0.

B. Training

Training the RBFNs requires to find, as stated before, three
parameters: (a) the centres ci, (b) the values of wi in such
a way that the predictions on the training set minimises the
errors and, finally, (c) the RBF width parameters βi.

The centers can be chosen to coincide with the known
data-points and evaluate them with the real fitness evaluation.
The β value can be either fixed for all N linear RBFs (global)
or it can be customised for each RBF (local). Typically, the β
value is set as 1/D2 where D is the mean pairwise distance
between data-points in the nearest n neighbours from known
data-points set 2. In this work, we let GP to find the “best”
global β value for all RBFs in the RBFN (more on this is
explained in Section III).

The value of β controls the radius of each RBF (spreading
on the search space to cover all the other centres), so
that each known function value at a centre can potentially
contribute significantly to the prediction of the function value
of any point in space. Finally, the weights vector can be
calculated by solving the system of N simultaneous linear
equations in wi by requiring that the unknown function
predicts exactly the known data-points. Formally, we have:

y(xi) = bi, i = 1 . . . N.

2Note that the distance definition depends on the underlying representa-
tion of the problem. Since in this paper we aim to build surrogate model
for GA search, we use the Hamming distance.

Setting gij = φ(||xj − xi||), the system can be written in
a matrix form as Gw = b where b is a vector of the true
fitness values of the data-points that have been used to train
the surrogate. The matrix G is non-singular 3, because we
guarantee the points xi are distinct, so the weights w can be
solved by simple linear algebra:

w = G−1b

The value of the bias term w0 in Equation 1 is set to the
mean value of the known data-points, i.e., the mean of vector
b. In this way, the predicted function value of a point which
is out of reach of the influence of all centres is by default
set to the average of their function values.

C. Interpolation

The RBFNs can be naturally generalised from continuous
spaces to any representation [10]. This can be done by
considering distances defined directly on the underlying
representation. The generalisation is possible because the
representation of RBFN, their training, and the prediction
do not depend directly on the representation, but depends
only on the distances between solutions [10].

Once the RBF parameters are determined, the model is
ready to estimate the fitness of any unseen point. Thus, the
fitness f(x) of unknown point xq in the search space is
predicted by weighted linear combination of:

f(x) = w0 +
∑N

i=1[wi ∗ φ(d(xq, ci))]

where, wi is a vector of weights that has been calculated
during the training phase and φ is the kernel function which
is defined in Equation 1. Finally, d(xq, ci) is the distance
between the new point xq and the training set points ci.

III. GP-RBFN SURROGATE

There are two main problems associated with training
RBFN. Firstly, determining the optimal architecture and
secondly, determining the optimal parameters [3]. In this
work, we let the GP to evolve the RBFN parameters. In
particular, we search for the best β value i.e., RBF radius
parameter.

To do so, we train the RBFN on a small set of solutions
evaluated using the real objective function (called the known-
points set) as described in Section II-B. As mentioned
previously, we let the GP to decide the β value. The trained
RBFN (without calculating its β) is then passed to GP as a
function in the form:∑N

i=0 wi ∗ exp(−β‖xq − ci‖)

we refer to this function as RBF node. Thus, this can be seen
as passing a collection of RBF functions to the GP together
with its weights parameters. For each RBF node, GP allocates
a β value (randomly selected) from the interval (0, 1]. Note
that all RBF nodes (in the same tree or in different trees)
have the same parameters. The only difference is in the β

3A singular matrix does not have a matrix inverse if and only if its
determinant is 0.

TABLE I
PRIMITIVE USED IN OUR WORK.

Primitive Arity Input type(s) Output type
Plus, Minus, Div, Mul 2 Real number Real number

RBF 1 Unseen solution Real number
Constants [-1,1] 0 N/A Real number

values. Thus, GP has the freedom to modify the β value in
each RBF node and also combines it with constants values to
control the magnitude of its output in such a way to minimise
the prediction errors on the known-points set.

The aim is to evolve a program that can generalise its
predictions on unseen solutions. For this, GP is supplied
with primitives that allows it to build SMs. Table I shows
the primitive set used by our GP system. The trees shown
in Figure 1 provide an example of two evolved ‘surrogate
program’ by means of a GP system.

Thus, when a RBFN is executed to estimating the fitness
of an unseen point (as defined in Equation 1) we replace the
RBFs with an evolved expression. So, an evolved expression,
for example, may contain RBF node multiplied by a constant
(Figure 1 (a)), or it can be a single RBF node with a suitable
β value (Figure 1 (b)). Also, it might be the case that GP
decides to evolve an expression that uses multiple RBF nodes
combined with division or multiplication, for example.4

More formally, let the surrogate known-points set be cn
where n ∈ {1, 2, ..., N} and let the ith individual in the
population denoted as Ii. Finally, let xq be an unseen point
in the problem’s search space. Thus, any program in the
population can estimate the fitness of an unseen solution as
follows:

EstimatedF itness(Ii, xq) = w0 + Ii(cn) (2)

where w0 is the bias term defined in Equation 1 (mean value
of known-points set).

Similar to the traditional procedure of surrogate model
based optimisation (SMBO) [6], [10] the best evolved pro-
gram is used as a SM in a generational GA (referred in this
paper as fast GA, because it does not use the real fitness
function, instead it uses a cheap surrogate model). Thus, the
role of the fast GA in the SMBO procedure is to infer the
location of a promising solution of the problem using an
evolved SM.

The best solution found by the SM after performing a
fast GA run is then passed to the real objective function to
calculate its real fitness, updating the known-points and re-
training the system. This process iterates until a maximum
number of evaluations is reached, as outlined in Algorithm 1.
Note that the system adds a random solution to the known-
points set if the surrogate suggests a solution that is already
present in the known-points set. This can happen because the
points in the training set act as centres of the evolved RBF
expressions (they are aligned with the peak of the Gaussian).

4We observed that in most cases GP evolves an expression that uses single
RBF node combined with a constant value using an arithmetic operator.

Mul	

RBF_Beta291	
 Constant	

RBF_Beta453	
 Minus	

Mul	

Constant	

RBF_Beta1	

RBF_Beta423	

a	
 b	
 c	

Fig. 1. Three examples of evolved programs. Each program corresponds to one of three types of expressions (read text in Section V).

The approximating function is the sum of these evolved
RBFs. Depending on the β values (randomly allocated by GP
for each RBF node), the approximating function would tend
to have local and global optima exactly in the centres of the
RBFs, i.e., the known-points. Then when the fast GA finds
an optimum, this may happen to be a point in the training
set! Generally, this tends to happen when the β values are
not small enough. However, when β is large enough, the
RBFs are spread and overlapping, and the approximating
function tends to be unimodal with the position of the peak
influenced by the sum of all the RBFs, and it is not a training
point. Another reason for finding the same training point as
optimum is that the training point might correspond to the
best of the real function (which was already suggested by the
SM in previous iterations). This indicates that the problem
has already been solved.

A. GP Training

To train the GP system to evolve surrogate models, we use
a simple two-rounds cross-validation scheme. The first round
of cross-validation involves partitioning the known-points set
into two separated equal subsets, performing the training on
one subset (training set), and validating the GP individuals
on the other subset (testing set). In the second round of cross-
validation, partitions are swapped and the validation results
are averaged over the rounds.

Note that once the GP generates a surrogate program, it
passes it to the fast GA (as fitness measure) to find promising
points and then update the known-points set. Thus, at each
iteration the system adds a new point to the known-points
set. Then GP generates a new surrogate program to maintain
the new knowledge about the under-sampled search space.

B. Fitness Function

The fitness evaluation is designed to encourage GP to
evolve programs that minimise the absolute prediction errors
on the training set. It is worth mentioning that programs

Algorithm 1: GP-RBFN Surrogate Search.

Known-points-Set = Generate-Solution(initial-set-size);1

Expensive-Evaluation(Known-points-Set);2

GP-RBFN-Surrogate.Train(Known-points-Set);3

while Expensive-evaluation-budget Not Finished do4

P = Fast-GA-Run(population-size, generations,5

GP-RBFN-Surrogate);
P is best solution found by a cheap6

GA run
if Promising-Point is unique then7

Expensive-Evaluation(P);8

Known-points-Set.add(P);9

end10

else11

Known-points-Set.add(Random Unique Point);12

end13

GP-RBFN-Surrogate.Train(Known-points-Set);14

end15

which produce low prediction errors are not necessary able to
approximate the real objective function and may not be able
to guide the search to optimal solutions. In fact, preliminary
experiments showed that when the fitness function is guided
by the average absolute error of predictions, GP tends to
evolve programs that produce numbers close to the training
set average. This bias the system to evolve programs that
produce the average value of the training set. To alleviate
this problem, we also measure the correlation between pre-
dictions produced by an individual and the real fitness values
in the training set values. Also, the tree size is considered
in the fitness evaluation to encourage GP to evolve small
programs (hence fast to evaluate).

More specifically, let the individual Ii prediction for an
unseen solution xq be the function Estimation(Ii, xq),
defined in Equation 2, and the total number of training points

be N . We have that the prediction error (PE) can be defined
as follows:

PE =
PN

n=0 abs(Estimation(Ii,xq)−RealF itness(xq))

N

The correlation between predictions and the known-points
set values can be defined as the function Corr(ˆf(t), f(t))
where f(t) is the function that returns the real fitness values
for solutions (Equation 3) and ˆf(t) is the approximation
function that returns the estimated fitness values as defined
in Equation 2. Finally, the tree size of the individual Ii can
be represented as the function Size(Ii). Putting all together,
we calculate the fitness function (Ff) as follows:

Ff = PE + [Corr(ˆf(t), f(t))×−1] + Size(Ii)

Thus, here we aim to minimise the fitness func-
tion as to evolve better programs. The reason of using
Corr(ˆf(t), f(t))×−1 is to encourage the system to produce
positive correlation while at the same time minimise the
fitness function.

IV. EXPERIMENTAL SETUP

The Boolean satisfiability problem, also known as SAT, is
one of the most studied NP-complete problems (e.g., see [4],
[13]) and it has been used as an illustrative example to
show that our model is able to improve the standard RBFN
surrogate models. Thus, our aim is not to effectively solve the
SAT problem itself, but rather to show that our approach can
achieve better solutions using low number of evaluations than
standard RBFN surrogate as well as other standard search
algorithms.

The target in SAT is to determine whether it is possible
to set the variables of a given Boolean expression in such
a way to make the expression true. The expression is said
to be satisfiable if such an assignment exists. A related
problem, known as the Maximum Satisfiability problem, or
MAX-SAT, consists in determining the maximum number of
clauses of a given Boolean formula that can be satisfied by
some assignment.

We treat MAX-SAT as an optimisation problem with the
following objective function:

f(x) =
c∑

i=1

Si(x) (3)

where Si(x) is 1 if clause i is satisfied by assignment x
and 0 otherwise. A clause is satisfied if at least one of the
literals it contains is true. Since our MAX-SAT instances are
all satisfiable, we declared a MAX-SAT problem as solved
as soon as a string x such that f(x) = 1 was generated by
the EA.

Experiments have been conducted to evaluate the proposed
Surrogate Model. To do this, we chose a variety of the well-
known MAX-SAT problems, which we felt were difficult
enough to demonstrate the characteristics and benefits of
the method. Here, the MAX-SAT problems are considered
as costly objective function. It should be noticed that the

TABLE II
SURROGATE PARAMETERS SETTING

Setting Value
Expensive Evaluation 5n
Initial sample size 2

GP Population 50
GP Generations 20
Crossover rate 0.7
Mutation rate 0.3

aim of the present experiments is not to show that GP-
RBFN can be competitive on real-world problems with
expensive objective functions, rather it is to show that GP-
RBFN can be, in principle, applied to such cases and that
it provides meaningful results when applied to well-studied
model problems on a simple discrete space. Note that RBFN
surrogates are known to be successful for approximating
continuous space problems. In our experiments we consider
a discrete problem space to have different characteristics
compared to continuous spaces. Hence, this preliminary step
is necessary to validate GP-RBFN.

In order to evaluate the performance of the SMBO algo-
rithm under different conditions of problem size and rugged-
ness, we use MAX-SAT of size n = {20, 25, 30, 35, 40}.
For comparison purposes, we performed extensive empirical
experimentation (10 * 5 * 5 runs in total) 5.

All MAX-SAT problems were generated using a standard
generator called sgen which was developed to generate small
and difficult benchmarks for the satisfiability problem [14].
Sgen has been used for the annual SAT competition and
satisfies the input requirements of that competition [14].

Tables II & III reports the GP-RBFN surrogates settings.
The reason of setting the size of the initial samples of data-
points to two is to prove our prime hypothesis that the
surrogate model is better than random sampling at suggesting
promising solutions which are better than the known-points
set as it makes rational use of the available known-points set
to guess the next promising point. Since, the fast GA search
is guided by a cheap surrogate evaluation, we have been
generous with its search size, as illustrated in Table III, i.e.,
10n× 10n, where n is the number of variables in the MAX
SAT problem. GP-RBFN settings are shown in Table II. The
first section (top) of Table II shows the number of evaluation
of the RBFN whereas the second section (bottom) shows the
used GP setting to optimise the RBFN. Regarding the GP
setting, we used trail and error approach to find the best
settings in a way that balances between good performance
and computational costs.

As a reference of performance, we compared our results
against (a) standard RBFN Surrogate to validate our ap-
proach against the standard surrogate model, (b) standard
GA search to verify whether our approach can find better
solutions using small number of evaluation than standard

510 independent runs, 5 different settings for the number of variables
(n = {20, 25, 30, 35, 40}) used for the MAX-SAT problem, and 5 different
approaches (our proposed approach: GP-RBNF against standard RBFN,
standard GA, (1+1) ES and Random Search).

TABLE III
FAST GA PARAMETERS SETTING

Setting Value
Fast GA Population 10n
Fast GA Generations 10n
Crossover rate 0.7
Mutation rate 0.3

TABLE IV
SETTINGS USED IN THE EXPERIMENTS

Operator Standard GA 1+1 ES Random Search
(Uniform Distribution)

One-Point Mutation 30% 100% N/A
Crossover 70% 0% N/A

Tournament size 2 N/A N/A
Population Size n 1 5n

Generations 5 5n 1

(expensive) GA, (c) (1+1) Evolutionary Strategies (based on
one-point mutation) to compare our search with a standard
search algorithm and finally, (d) Random search to validate
our main hypothesis that surrogate is better than random
sampling as it makes rational use of the available information
and point out the next promising points in the search space.

For a fair comparison, all algorithms search the given
problem within exactly the same number of expensive eval-
uations, i.e., 5n, as illustrated in Table IV. Standard GA
searches the given problem using n population through 5
generations (thus 5n in total). We used tournament selection
size 2. As for Standard RBFN surrogate we used the same
settings as in the proposed model (see upper section in Table
II and Table III). The radius parameter β, has been set to
1/D2 where D is the mean distance of the closest 50%
neighbours from the known-points set.

V. RESULTS AND DISCUSSION

A. GP-RBFN vs. Competitors

In order to test how reliable is our approach in estimating
fitness values without the need of evaluating them, we
used the best-of-run solution in each run to compare the
performance. Every time the surrogate uses the real fitness
function, we count this as a real evaluation. The number
of these evaluations is the real search. Thus, to make a
fair comparison we give the same number of these real
evaluations to all the algorithms used in this study. Note
that, giving the algorithms in the comparison same number
of expensive evaluations is similar as giving them the same
amount of computational time to search the problem. In this
paper, we preferred to make a fair comparison based on
number of expensive evaluations rather than using the time
because it is easier to control.

As mentioned previously, the aim is not to effectively solve
the SAT problem itself, rather than to show that our approach
can achieve better solutions using small number of evalu-
ations than its competitors. We compared the performance
(both in terms of finding the global optimum and the average
of the best solutions) of our proposed approach (GP-RBFN)

TABLE VI
KOLMOGOROV-SMIRNOV TEST.

GP-RBFN
vs. Standard
RBFN
Surrogate

GP-RBFN
vs. GA

GP-RBFN
vs. (1+1) ES

GP-RBFN
vs. Random
Search

N = 20 0.031 0.031 1.89E-05 1.70E-04
N = 25 1.89E-05 1.89E-05 1.89E-05 1.89E-05
N = 30 0.031 1.70E-04 1.89E-05 1.89E-05
N = 35 0.0012 0.0012 1.89E-05 1.89E-05
N = 40 1.70E-04 0.111 1.70E-04 1.70E-04

versus four different approaches (Standard RBFN, Standard
GA, Random Search and (1+1) ES). Table V reports these
results.

Our proposed approach, GP-RBFN surrogate, outper-
formed its competitors in four (out of five) instances of the
MAX-SAT problem. For instance, if we focus our attention
on the best fitness values, we can clearly see that GP-
RBFN surrogate model achieved the best results (indicated
in boldface in Table V) in most of the cases compared with
the other four approaches. Only in one case (40 variables)
GP-RBFN comes in second place after standard GA. If we
further continue analysing these results, we can see that our
approach was the only one to find the global optima in two
(out of five) instances of the MAX-SAT problem (i.e., 20
and 30 variables). Global optima found by our approach
are underlined in Table V. Notice also how our proposed
approach suffers from less variations (i.e., standard deviation
denoted by std.) in most of the cases compared to other four
competitors. If we, now, turn our attention on the average of
the best solutions (third column of Table V), we can further
corroborate that our approach, GP-RBFN, remains as the best
approach compared to the rest of the approaches used for
comparison purposes. For instance, Standard RBFN and GA
always come on the second place in all instances. This is
not surprise because our approach has the advantage that GP
allows to evolve β values that fits the problem, as explained
in Section II.

We suspect the reason that our approach did not outper-
form its competitors in 40 variables may be because we
over trained the model. Consequently, if the SM gains more
diversity, the result could be better once the problem size is
even larger. This aspect will be further investigated in future
research.

To further verify the significance of our results, a
Kolmogorov-Smirnov two-sample test [11] has been per-
formed on the test-case results produced by the best evolved
system in each run for all pairs of systems under test and
for all five test cases. Table VI reports the p-value for the
tests. As one can see, in all cases our system is statistically
significantly superior to all its competitors at the standard
5% significance level except for GP-RBFN vs. GA when
N = 40. Note that our experiments show that GA has
outperformed GP-RBFN in terms of best achieved solution
in this particular case. Here, the high p-value indicates that
it is unlikely that GA will outperform GP-RBFN in future

TABLE V
SUMMARY OF 50 INDEPENDENT RUNS (10 RUNS FOR EACH MAX-SAT INSTANCE).

GP-RBFN Surrogate RBFN Surrogate Standard GA (1+1) ES Random Search
Vars. Opt. Avg. Std Best Avg. Std Best Avg. Std Best Avg. Std Best Avg. Std Best

N = 20 91 90.00 0.60 91.00 89.00 0.60 90.00 88.80 1.03 90.00 87.00 0.95 89.00 83.80 2.12 86.00
N = 25 60 59.00 0.00 59.00 58.10 0.29 58.00 57.60 0.76 58.00 56.30 0.74 57.00 51.30 3.86 57.00
N = 30 72 70.90 0.79 72.00 69.50 0.48 70.00 69.00 0.43 70.00 67.10 0.79 69.00 60.10 3.78 66.00
N = 35 84 82.50 0.48 83.00 81.00 0.60 82.00 81.00 0.60 82.00 77.70 0.61 79.00 72.00 4.37 78.00
N = 40 96 93.90 0.28 94.00 92.2 0.57 93.00 93.5 0.63 95.00 88.60 0.97 91.00 68.28 3.21 86.00
*Bold indicates the best results among all the approaches, underlined indicates global optima.

runs.

VI. CONCLUSIONS

In this paper, we proposed a new Surrogate Model based
on Genetic Programming and Radial Basis Function Net-
works, called GP-RBFN Surrogate. We have shown how it
is possible to successfully estimate the fitness of potential
solutions using SMs. Because SMs are approximation func-
tions, they highly depend on how the system explores the
search space. To do so in an unbiased way, we let our GP
system to evolve RBFs expressions, so there is freedom in
their parameters.

The proposed model uses GP to construct better RBF
expressions for the RBFN surrogate model. GP receives
standard RBF associated with its weights as a primitive and
uses it to construct surrogate programs. We let the GP system
to find the best radius parameter value for the RBF. Evolution
modifies the radius parameter of the RBF and also combines
it with constants values to control the magnitude of its output
in such a way to minimise the surrogate’s prediction errors.
For the proposed model, a fitness function was designed
to encourage GP to the evolve a small and accurate RBF
expressions that are able to generalise on unseen data-points.

Our proposed approach was tested in one of the most
studied NP-complete problems (MAX-SAT) to validate its
effectiveness. Results clearly indicate that GP-RBFN suc-
cessfully uses SMs to avoid evaluating a large number of
candidate solutions while finding good solutions. We verified
the significance of the results by applying the statistical
Kolmogorov-Smirnov two-sample test. The test shows that
the GP-RBFN surrogate is statistically significantly superior
to all other four approaches at the standard 5% significance
level. It is fair mentioning, that our approach suffers from one
problem which is the extra computational costs of evolution
candidate solutions at every time it suggests a new solution.

This research can be extended in several directions. Firstly,
an attractive idea is to let GP decides the weights beside
the radius parameters. Another direction is exploring the
possibility of letting GP finding the best number of RBFs’
centres to be used in such a way to improve the surrogate’s
prediction.

REFERENCES

[1] A. G. Bors. Introduction of the radial basis function (rbf) networks.
Technical report, Department of Computer Science, University of
York, UK, 2001.

[2] A. Forrester, A. Sóbester, and A. Keane. Engineering design via
surrogate modelling: a practical guide, volume 226. Wiley, 2008.

[3] C. Harpham, W. Dawson, and R. Brown. A review of genetic
algorithms applied to training radial basis function networks. Neural
Comput. Appl., 13:193–201, September 2004.

[4] H. H. Hoos and T. Stützle. Local search algorithms for sat: An
empirical evaluation. J. Autom. Reason., 24:421–481, May 2000.

[5] Y. Jin. A comprehensive survey of fitness approximation in evolution-
ary computation. Soft Comput., 9(1):3–12, 2005.

[6] D. R. Jones. A taxonomy of global optimization methods based on
response surfaces. J. of Global Optimization, 21:345–383, December
2001.

[7] J. R. Koza. Genetic Programming: On the Programming of Com-
puters by Means of Natural Selection. The MIT Press, Cambridge,
Massachusetts, 1992.

[8] Y. Lian, M. sing Liou, and A. Oyama. An enhanced evolutionary
algorithm with a surrogate model. 2008.

[9] D. Lim, Y. Jin, Y.-S. Ong, and B. Sendhoff. Generalizing surrogate-
assisted evolutionary computation. Evolutionary Computation, IEEE
Transactions on, 14(3):329 –355, 2010.

[10] A. Moraglio and A. Kattan. Geometric generalisation of surrogate
model based optimisation to combinatorial spaces. In EvoCop, Lecture
Notes in Computer Science. Springer, 2011.

[11] J. A. Peacock. Two-dimensional goodness-of-fit testing in astronomy.
Royal Astronomical Society, Monthly Notices, 202:615–627, 1983.

[12] R. Poli, W. B. Langdon, and N. F. McPhee. A Field Guide to Genetic
Programming. Published via http://lulu.com and freely avail-
able at http://www.gp-field-guide.org.uk, 2008. (With
contributions by J. R. Koza).

[13] B. Selman, H. Levesque, and D. Mitchell. A new method for solving
hard satisfiability problems. In AAAI, pages 440–446, 1992.

[14] vor Spence. Generator of benchmarks for the satisfiability problem
(sgen), April 2011.

