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Abstract—Research on semantics in Genetic Programming operator in an attempt to find, over a period of trials,
(GP) has increased over the last number of years. Results in this offspring that are semantically different from their pagen
area clearly indicate that its use in GP considerably increases Whereas these type of methods have proven to have a

performance. Many of these semantic-based approaches rely on . o . :
a trial-and-error method that attempts to find offspring that superior performance than a traditional GP in terms of find-

are semantically different from their parents over a number INg problem solutions and started shedding the importance
of trials using the crossover operator (crossover-semantics of semantics in GP, they also suffer from one particular

based - CSB). This, in consequence, has a major drawback: |imitation: these are computationally expensive as a tesul
these methods could evaluate thousands of nodes, resulting in of their trial-and-error approach [16].

paying a high computational cost, while attempting to improve . . . -
performance by promoting semantic diversity. In this work, The main goal of this paper is to explore the possibility

we propose a simple and computationally inexpensive method, Of using semantics in canonical GP without the necessity of
named semantics in selection, that eliminates the computational  evaluating, potentially, thousands of nodes while at taeesa
cost observed in CSB approaches. We tested this approach time maintaining a similar performance compared to methods

in 14 GP problems, including continuous- and discrete-valued o land. s
fitness functions, and compared it against a traditional GP and based on trial-and-error. More specifically, we propose a

a CSB approach. Our results are equivalent, and in some cases, SIMPplé and computationally inexpensive method of using
superior than those found by the CSB approach, without the Semantics in the selection process, where one parent is
necessity of using a “brute force” mechanism. selected by considering its fitness, while the selectiorhef t
second parent considers fitness and semantic dissimilarity
w.rt. the first selected parent. This eliminates the need
Genetic Programming (GP) [12] has been successfulyf using a “brute force” mechanism to find children that
used in a wide range of different challenging problems (segre semantically different from their parents, and so, the
Koza’s article on human competitive results for a compreheomputational cost of this new semantic-based approach,
sive review [13]). Despite its proven success, it also ssiffe denominatedsemantics in selectio(SiS), remains the same
from some limitations and researchers have been interesi@mpared to a traditional GP system.
in making GP more robust, or reliable, by studying various This paper is organised as follows. In Section II, we
elements of the search process (e.g., neutrality [4], B}, [ present previous work carried out in the area of semantics in
[21], locality [5], [6], [7], special representations [3]) GP. In Section III, we introduce our proposed approach. Sec-
One of these elements that has recently attracted thgn |v provides details on the experimental setup used. The
attention of researchers is the study of semantics, ragultiresults presented in this paper are discussed in Sectiondv, a
in a dramatic increase in the number of related publicatiorigally, conclusions and future work are drawn in Section VI.
(e.g., [1], [10], [11], [14], [15], [16], [20], [23]).
Semantics is a broad concept that has been studied in I
different fields (e.g., natural language, psychology), imgk
it hard to give a precise definition of the concept. Thus, isth McPhee et al. [15] analysed the impact of subtree
work we adopted the popular use of semantics in GP fromrossover in terms of semantic building blocks by proposing
recent related works [10], [20], [22], [23], where rese@msh two forms of approaches: semantics of subtrees and seman-
have used it as the difference of the raw outputs of twiics of context. Within the context of Boolean problems, the
programs. authors were able to show the importance of diversity in GP
Research in this area has clearly demonstrated that themantics. That is, McPhee et al. pointed out how the 90%-
study and application of semantics in the GP process em©% crossover operator used in GP (i.e., 90%-10% internal-
hances its performance [10], [11], [20], [22], [23]. Theseexternal node selection policy) leads to a high proportion
studies have relied on the use of semantics at the crossowércrossover events that do not have any useful impact in
N _ . the semantic space of GP, leading to a lack of increase in
In these works, semantics was originally referred as the “ingarof . N . S
programs. However, as we discuss in Section Ill, it might beebdo re- performancez measured in terms of finding fitter individuals
define it asfunctionality. over generations.

I. INTRODUCTION

. RELATED WORK



Beadle and Johnson [1] proposed a crossover operatorantic spaces for different metrics and provided insigats f
called Semantically Driven Crossover (SDC), that promotedesigning semantically-based geometric crossover apsrat
semantic diversity during search. More specifically, theyrhey tested their approach in a variety of problems, showing
used reduced ordered binary decision diagrams (ROBDDpw semantically different programs, produced by means
on Boolean problems (i.e., Multiplexer and the even-5tpari of crossover, yield better results compared to standard GP,
problem) to check for semantic similarity between parentagreeing with the results obtained by other semantic-based
and offspring. Beadle and Johnson showed a significaapproaches. It is also interesting to notice that the asathor
improvement, in terms of increased fitness, when usingiso reported how their approach produced bigger programs,
SDC. Moreover, they also showed that by using ROBDI2ontradicting the results found by Uy et al. [20].
on these particular problems, the SDC operator was able toRecently, Krawiec and Pawlak [14] explore the concept of
considerably reduce bloat. Geometric Semantic GP with the key concept being that it

Uy et al. [20] proposed four different forms of app|yingwould be ideal to produce offspring that were the semantic
semantic crossover operators on real-valued scenarigs (eMedian of the parent programs. This means that it would be
symbolic regression problems). To this end, the authoReneficial if offspring had a an equal blend, or mixture, of
measured the semantic equivalence of two given expressidh§ Parents semantics. They speculate that finding offgprin
by measuring them against a random set of points samplﬂlﬁt meet a median measure of semantics between parents,
from the domain. If the resulting outputs of these twgvould increase the chances that the offspring would have
expression were close to each other, subject to a thresh@dhigher fitness than both parents. Their approach tries to
value called semantic sensitivity, these expressions wei@gulate the crossover effect. Where syntactic crossovgr ma
regarded as semantically equivalent. In their first two sc&ause a huge change in semantics (or none at all), their
narios, Uy et al. focused their attention on the semantics 8PProach seeks to provide a more uniform semantic change
subtrees. More specifically, for Scenario I, the authoesitto  When offspring are created. As the creation of such offgprin
encourage semantic diversity by executing, for a number &% hard, the authors provide preliminary evidence for this
trials, crossover if two subtrees were semantically edeita  Claim by inspecting a more practical measure of semantic
Scenario Il explored the opposite idea of Scenario I. Fdpedian which is localised in homologous regions of the
the last two scenarios, the authors focused their attenti@@rent programs.
on full _trees. That is, for Scenario I_II, Uy et _al. checkedy  Final Comments on Semantics in GP
if offspring and parents were semantically equivalent.of s i . .
the parents were transmitted into the following generation, From the previous summary, it is cl_ear_that there_ls no a
and the offspring were discarded. The authors explore?ngle approach to incorporate semantics in GP. For insfanc
the opposite idea of Scenario Ill in Scenario IV (childrerin® WOrk carried out by Beadle and Johnson [1] is completely
semantically different from their parents). They showex, f different from the \{vork prop(_ased by Uy et aI_. [20].

a number of symbolic regression problems, that Scenario | HOWeVer, what is interesting to observe is how authors

produced better results compared to the other tree scsnaﬁ@nS'Stently report an |mproverr.1en't n performance in GP
proposed by them. search (measured in terms of finding a solution more fre-

ics h Iso b died b K II_quently) when semantics is explicitly considered.
Semantics has also been studied by Jackson [10], ca Ir‘glnspired by these approaches and their encouraging results

it phenqtypic diversity. In his work, the author measureei threported in [10], [11], [20], [22], [23] and briefly summaes
semantics of programs based on their output. For this parpo reviously, this work continues using the same form of

the authors use_d problen_"ns from dlﬁerent domains (e. emantics (e.g., [10], [22]), reinforced in the following
Boolean, symbolic regression, and ma_ze-hke problems). Flection in the context of the problems used, and proposes
the Boolean problems (e.g., everparity problems), the  qjmhje idea to overcome the computational expensive
author measured semantic difference between two prograggisation observed by these CSB trial-and-error appreach
based on their difference in the corresponding bits of the|{ is worth mentioning, however, that recent works have
output strings. For the symbolic regression problem, Jaeks o, 404 shedding some light on this but with other form of

used an approach similar to Uy's appr_ola.ch [20] describ mantics [16] and what are referred to as behavior-based
above. For the maze problems (e.g., artificial ant), thecxluthapproaches [17], 18], [19].

kept record on the path history. The author’s approach & als
similar to Uy’'s approach based on the use of a maximum [1l. SEMANTICS IN SELECTION

number of trials, around 20, to trying to promote semantic As can be seen from the previous section, semantics has
diversity. Jackson showed how semantic diversity Promotegainly been explored in GP using crossover as the main
a better search, in terms of finding solutions more freqyentyenetic operator (and few works have also explored its use
compared to a traditional GP. using mutation, e.g., [2]) reporting outstanding resuitsath
More recently, Moraglio et al. [16] proposed Geometriccontinuous [10] and discrete-valued fithess functions.[20]
Semantic GP, where the main idea was to use it directly in tH@ne potential limitation on these approaches (e.g., [1],[
space of the underlying semantics of the potential solstiori20], [22], [23]) is the fact that the authors reported the us
(programs). That is, the authors considered propertieg-of f a maximum number of attempts, when applying crossover,



Algorlthm 1 Semantics in Tournament Selection For the Evem_Parity pr0b|ems 7@ — {374’5})’ the

1: procedure SELECTING INDIVIDUALS semantics of an individual is measured in terms of the output

2: parent; < TournamentSelection > Apply it produces. More specifically, we keep a record of the result
tournament selection as usual that each fitness case produces in a vector of Biz&o, we

3 parenty < TournamentSemantics(parent;) regard two individuals to be semantically different if thei

4: end procedure output vectors are different, they are considered senadlytic

5: procedure TOURNAMENTSEMANTICS(parenty) similar otherwise.

6: semanticsparent, < Pop.getSemantics(parenty) Finally, for the Symbolic Regression problems, we again

7: best + nextInt(populationSize) keep track of the semantics of an individual in terms of

8: fbest + fitness|best] the output it produces, as in the EvenParity problems.

9: count < 0 The main difference is that in this continuous-valued fighes

10.  while count < tournamentSize do function problem we also use a threshold value=0.01),

11 comp < nextInt(populationSize) > select to indicate if two individuals are semantically different.
randomly a competitor from the population That is, in a vector of size.., where f.. is the number of

12: semantics.omp < Pop.getSemantics(comp) fitness cases used, we check whether the absolute diffarence

13: if semanticsparent, <> semantics.omp then — between corresponding outputs lie within Thus, we regard

14: if fitness[comp] > fbest then two individuals to be semantically different if for each

15: fbest < fitness[comp) corresponding value contained in the vector the difference

16: best < comp is greater than the threshold value they are considered

17: end if semantically similar otherwise.

18: end if As indicated before, researchers have reported an improve-

19: count < count + 1 ment in the performance of a GP system by encouraging

20: end while semantic diversity (e.g., parent and offspring being seman

21 return best tically different). In this work, instead of promoting it at

22: end procedure the crossover level, where the application of this operator

is repeated until the offspring is semantically differemart
their parents or until a maximum number of trials (e.g.,
Jlmaz = 20) are executed, whatever occurs first [10], [11],
éﬁO], [22], [23] we encourage semantic diversity at the
gglection operator, in this case using tournament setectio
That is, we select the first parent in the typical way: we

to find children that are semantically different from thei
parents. As a consequence of this trial-and-error approa
the GP system could, potentially, evaluate many more nod

compared to a traditional GP. i L oY
In this work, we make an effort to overcome this limita define a pool ofty;.. individuals, and for a maximisation
. S . ) . roblem, the one with the highest fitness is chosen to be
tion by considering semantics during the selection process_ ", - .
X . . . used in the crossover operator. The selection of the second
without the need of using a maximum number of trials. The . S e )
rent is chosen by considering both: fitness and the sernanti
tisch b d both: fit dth t

e}pproach IS tested_ln both continuous and d|screte-valu§§ference from the first selected parent. More specifically
fitness cases by using well-known GP benchmark problentﬁ

. . . . . e second parent is chosen from a poot gf. individuals
g;(e;i;leArrr:gKi::':Ir(ﬁjTéeEdV?nngelj:at‘ircl)tr{ Ia\?)d Symbolic Regressmnthat is semantically different, as explained in the presiou

. L o aragraphs, from the first parent and that has the highest
Before explaining the approach, it is important to indicat

h ! hich is based “fitness value. Algorithm 1 describes this idea in detail. For
OWk we meazul;e semantics, xv Ic hls ars]e gnf_pre;wo Poblems where the goal is to minimise, the method works

WOrks reported by [1_0]’ [20], w ere the authors defined sgp same, with the difference that the individuals with the

mantics as the meaning of syntatically correct programs. VYSWest fitness is selected

believe that it is better to define semantics asftimetionality The motivation behind-this idea, is that, by having two

of programs (raw outputs). The main reason is because i renis that are not only fit but also semantically different

these works, the authors measured semantics diversityeby th ;. offspring obtained via crossover, could increase the

difference of the outputs of two GP individuals when theirprobability of producing semantically different indivialls

instructions are exe_cuteq. This is explained next for edch Qithout the necessity of using a trial-and-error approach,
the problems used in this work. eliminating the number of unnecessary evaluated nodes in-

For the case of the Artificial Ant problem, we keep tracksrred by applying crossovet,,,, of times. We further
of the individual's semantics by recording the movementgiscuss this in Section V.

produced by the execution of the program. Thus, every time

the ant moves to a different square, we record where the IV. EXPERIMENTAL SETUP

ant is facing (i.e., north, east, south, west) in a vector. Fo For our analysis, we have used 14 GP benchmark prob-
this particular problem, we regard two individuals to bdems: the Artificial Ant Problem [12], the Evem-Parity
semantically different if their output vectors are diffete (n = {3,4,5}) problem (problems that require the com-
they are semantically similar otherwise. bination of several XOR functions, and are difficult if no



TABLE |

SUMMARY OF PARAMETERS. (o = 0.01), as explained in Section 1.
To evaluate our proposed approashmantics in selection
[ Parameter [ Value | (SiS), and for comparison purposes, we implemented two
Population Size 126, 250, 500]  other methods: a traditional GP system and a crossover-
Generations ZO%nior?éfg semantics based approach, referred as GP and CSB, respec-

Type of Crossover (used in each of the 3 approaches tively. The CSB tries to promote semantic difference at the

~

Crossover Raie 100 | Crossover operator with a maximum number of trials, as

Mutation None | described in Section Ill (see [20] for details).

Selection Tournament (size = 7 The experiments were conducted using a steady state
Initialisation Method Ramped half-and-half approach with tournament selection and the traditional
Initialisation Depths: crossover operator for each of the three approaches used.

Initial Depth 5 .

Final Depth 7 The _rest of _the parameters used are shown in Table _I._ To
Maximum Length 9000 nodes|  Obtain meaningful results, we performed extensive emngdiric
Maximum Final Depth 9 experimentation (100 * 42 * 3 runs in total)

Maximum Trials for CSB 20
Independent Runs 100 V. RESULTS ANDANALYSIS

A. Performance Comparison

. . . . Let us start by analysing the performance, measured in
bias favorable to their induction is added in any part of thg, s of percentage of runs that found a solution, for the

algorithm), and Real-Valued Symbolic Regression problemgqt combination of Population Size = 126 and Generations
(with 10 different target functions, as indicated in thetlef — 545 tor each of the three approaches used, shown in the
most column of Table I). second, third and fourth column of Table I, for each of

The first problem, the Artificial Ant Problem [12, pp. 147—the 14 problems used in this study. For the first problem,
155], consists of finding a program that can successfullxrtificial Ant, there is very little to say because all three
navigate an artificial ant along a path of 89 pellets of foodpproaches, GP, CSB and SiS, behave equally bad. That is,
on a 32 x 32 toroidal grld When the ant encounters a foq%ne of them was able to find a solution. For the Even-
pellet, its (raw) fitness increases by one, to a maximum @.parity Problem, there is no difference in performance
89. The problem is in itself challenging for many reasongsetween the approaches, because all the approaches were
The ant must eat all the food pellets (normally in 60Qiple to find the solution all the time (100% success rate).
steps) scattered along a twisted track that has single l€loulror the Even-4-Parity Problem, the situation is clearer. In
and triple gaps along it. The terminal set used for thigis problem, the semantic-based approaches are much bette
problem isT = {Move, Right, Le ft}. The function set is compared to the traditional GP system: 19, 60, 58 success
F = {IfFoodAhead, P2, P3}. rate for GP, CSB and SiS, respectively. For the Even-54Parit

The second, third and fourth problems are Boolean Eveproblem, all approaches have a poor performance, with the
n-Parity problems: = {3, 4, 5}) where the goal is to evolve difference being that SiS is able to find a solution, although
a function that returns true if an even number of the inputgery few times, compared to GP and CSB where none of
evaluate to true, and false otherwise. The maximum fithesisem was able to solve the problem. For the last type of
for this type of problem i2". The terminal set is the set of problems, Symbolic Regression, shown in the last 10 rows of
inputs. The function set i’ = {AND,OR, NOT'}. Table II, where for some functions (i.ety, Fs, F3, Fy, Fp),

The rest of the problems are real-valued symbolic réghe semantic-based approaches shown superior performance
gression problems. The goal of this type of problem isver the GP approach. It is clear how semantics consistently
to find a program whose output is equal to the valuegnproves performance compared to GP without semantics.
of functions. Thus, the fitness of an individual in theFor other Symbolic Regression problems (elg;, Fy, Fio)
population reflects how close the output of an individuathe situation is less clear, because the performance diratbt
comes to the targetfq,--- , Fio) (see the left-most col- approaches is more or less similar. Finally, it is interesti
umn of Table I1). It is common to define the fithess ad0o see, how for almost all the problems used, both methods
the sum of absolute errors measured at different values bfised on semantics take longer (number of generations are
the independent variable, in this case in the range [- indicated within parenthesis in Table II) to find a solution
1.0,1.0]. In this study we have measured the errors f@ompared to traditional GP (except for the Even-4 parity
r,y € {—1.0,-0.9,-0.8---0.8,0.9,1.0}. We have defined problem).
an arbitrary threshold of 0.01 to indicate that an indi- Let us now turn our attention to the second configuration
vidual with a fitness less than the threshold is regardeaf Population Size = 250 and Generations = 100 for each of
as a correct solution, i.e. a “hit". The function set is
F = {_‘_7 —, %, /7 Sin, Cos, Exp, LOG}, Where/ is pro- _2100 independent runs, 42 (i_.e., three different combinami‘tmopglation

L ... _sizes and number of generations that results, more or les$ieirsdame
tected division. We used the same threshold, 0.01, to ItEIICE1‘1umber of evaluations, and 14 different problems,) and thp®oaches
whether two individuals are semantically different of dami (GP, CSB and SiS).



TABLE Il
SUCCESS RATE OVERLOOINDEPENDENT RUNS AND THE AVERAGE NUMBER OF GENERATIONS WHENHE PROBLEM WAS SOLVED INDICATED WITHIN
PARENTHESIS USING THREE DIFFERENT COMBINATIONS OF POPULATION SIZES ANNUMBER OF GENERATIONS FOR EACH OF THE THREE
APPROACHES USED GP,CROSSOVERSEMANTICS BASED(CSB)AND SEMANTICS IN SELECTION(SIS). HIGHEST SUCCESS RATES ARE HIGHLIGHTED

IN BOLDFACE.
Population Size = 126 Population Size = 250 Population Size = 500
Generations = 200 Generations = 100 Generations = 50
GP | CSB | SiS GP | CSB | SiS GP | CSB | SiS
Artificial Ant 0 0 0 0 (316) 0 (1§ 5) é) 0
Even-3.Parit 100 100 100 95 99 99 100 | 100 100
y (9.29) | (5.04) | (5.85) || (15.64)| (6.53) | (11.15)| (5.93) | (4.28) | (4.49)
Even4-Parit 19 60 58 11 48 49 32 70 74
y (85.47) | (76.03) | (92.34) || (55.18) | (43.94) | (56.86) || (26.5) | (22.76) | (24.61)
) 0 2 1 0 0 3 0 0 3
Even-5-Parity - | a13s)| @79 - - | @o67)|| - - 33)
52 28 27 50 22 76 46 64 71 88
L=at et (3.19) | (14.26) | (19.46) || (6.18) | (7.11) | (10.65) || (3.69) | (3.86) | (4.47)
PRI 17 31 16 14 29 16 16 31 a4
=T AT AT (10.53) | (18.48) | (17.12) || (7.14) | (8.72) | (17.81) || (5.5) | (5.74) | (7.98)
T s 5 a4 s 10 23 23 8 16 14 15 20 27
Fs=a"+a”+a+a+a"+2 | 49 | (10.22)| (36.65) | (15.88) | (13.06) | (14.93)|| (7.4) | (6.6) | (8.41)
a2 . 0 10 Z 2 Z 2 2 7 10
4 = sin(z”)cos(x) — - 199 | @e) | 9 | aes) | @7 || @5 | 757) | (17.82)
- ) ) 2 0 1 1 0 Z 0 1 7
Fs = sin(z) + sin(z +27) 265) | - @0 | @2 - | 695) | - 14) | (19.71)
~ ) 12 7 24 14 18 24 22 30 22
Fo =log(x+1) +log(z”+1) | 4792)| (46.71) | (48.62)|| (14) | (13.28)| (18.17)| (6) | (12.80)| (14.59)
Fr — sqri(e) 0 2 1 0 2 3 3 1 Z
T st - (8.5) (5) - © | @467 || 367)| (7) | (16.75)
Iy S 0 i 6 Z 6 Z 0 0 0
Fs = sin(z) + sin(y”) - ©) | (59.83)| (4.25) | (29.5) | (13) - - -
Fy = 2sin(z)cos(y) 0 3 3 2 3 2 > ! 6
0= Y - 69.67)| (7.33) || (51) | (33) | @0) | (28) | 11.71)| (23)
o 2 1 0 2 0 1 2 Z Z
0= (32) (10) - (12.67) - (64) (13) (6.5) (20)

the three approaches used in this study, shown in the fifthppulation size and number of generations.
sixth and seventh column of Table Il. As before, there is . o )
very little to say for the Avtificial Ant problem because theB. Crossover-Semantics Based vs. Semantics in Selection
three approaches behave equally bad. For the kvBarity From the results reported in Table I, it is clear how both
problem there are some significant differences between tBemantic-based approaches outperformed the performénce o
GP approach and the approaches based on semanticsalGP system, where in some cases, these approaches where
particular, for the Ever-Parity problem where the results four times better than the latter approach.
found by the semantic-based approaches (i.e., CSB and SiSJrhe performance shown by the CSB approach (see Ta-
are much better, around four times better, compared to Gie 1) agrees with the results previously reported by Jack-
A similar trend is observed in some Symbolic Regressiogon [10] and Uy et al. [20] where the authors reported
functions (e.g.,F1, Fy, Fs, Fg), although the difference in excellent results when using semantics at the crossover lev
performance is not as impressive as in the case of the Eveor trying to find semantically different children (using a
4-Parity problem, where the performance increased is, imaximum number of attempts). As a consequence of the
average, the double compared to the GP approach. For othatter, the GP system could evaluate dozens of thousands
functions (e.g.F5.Fo) the three approaches behave equallgf nodes resulting in a highly computationally expensive
bad as very few runs were able to find a solution for thesgrocess.
problems. The main benefit of our approach (SiS) is that it does
For the last combination of population size and numbaerot suffer from the flaw of needing to, potentially, evaluate
of generations, 500 and 50, respectively, the same trendti®usands of nodes (we discuss this in the following para-
observed for the three approaches used and the 14 benchngrdphs). Moreover, our proposed approach is equivaledt, an

problems used in this study. in some cases superior, in performance compared to the CSB
That is, the semantic-based approaches are consistergfyproach, as discussed above.
better compared to the GP approach (e.g., Ev&arity, Now, let us focus our attention on the number of evaluated

Py, Fy, F3, Fy) regardless of the combination used for thenodes by CSB and SiS, shown in Figure 1 (notice that due



Number of evaluated nodes Number of evaluated nodes

Number of evaluated nodes

Artificial Ant Problem(Pop. 126) Artificial Ant Problem(Pop. 250) Artificial Ant Problem(Pop. 500)

Crossover-Semantics Based

Semantics in Selection
s1
Semantics in Selection 0%
emantics in Selection

Crossover-Semantics Based

%

Crossover-Semantics Based

Number of evaluated nodes
5,
Number of evaluated nodes

10 L L L L L L L L L L . .
0 20 40 60 80 100 120 140 160 180 200 0 10 20 30 40 50 60 70 80 90 100 0 5 10 15 20

25 30 35 40 a5 50
Generations Generations Generations

Even-n-Parity Problems(Pop. 126) Even-n-Parity Problems(Pop. 250) Even-n-Parity Problems(Pop. 500)
- - - - - - - - - . T T T T T

10’ T T

N
S

- ‘Semantics in Selection

Number of evaluated nodes
Number of evaluated nodes

.
=8

Semantics in Selection

Even-3 Even-3
- - Even-4 Even-4
— + —Even-5 - + —Even-5

10° . . . . . . . . . . . . . . .
0 20 40 60 80 100 120 140 160 180 200 0 10 20 30 40 60 70 80 0 100 0 5 10 15 20 30 35 40 4 50

50 25
Generations Generations Generations
| Symbolic Regression Problems(Pop. 126) | Symbolic Regression Problems(Pop. 250) " Symbolic Regression Problems(Pop. 500)
10 - - - - - - - 10 - - - - - T T T T T T T T T T T T
7 - it
P
i Crossover-Semantics Based -
7 wp 10°F
7 7
ks
;

Crossover-Semantics Based

5

.
Number of evaluated nodes
Number of evaluated nodes

Semantics in Selection

Semantics in Selection

10° . . . . . . . ; . . . . . . . . ;
0 20 40 60 80 100 120 140 160 180 200 0 10 20 30 40 50 60 70 80 %0 100 0 5 10 15 20 25 30 35 40 5 50

Generations Generations Generations

Fig. 1. Number of evaluated nodes for the two semantic-basgaphes: crossover-semantics based and semantics inselegported for the Artificial
Ant Problem (top row), Evem-Parity Problems (middle row) and for functiots , F», F3, for each of the three different combinations of population
sizes (PopSize) and number of generations (Gen) used: RopSi26, Gen = 200 (left-most side); PopSize = 250, Gen = 10Qr@erand PopSize =
500 and Gen = 50 (right-most side).

to space restrictions and for clarity purposes, we plothted t in the crossover-based approach could be the result of bloat
evaluated nodes for the Artificial Ant, EvenParity and the (growing of an individual at a rapid pace) rather than
first three Symbolic Regression problems). From the ploggerforming an extensive search using the crossover operato
shown in Figure 1, it is clear that our proposed approachhus, to show that this is not the case, we have measured the
(SiS) evaluates a much lower number of nodes comparederage number of trials needed by the CSB approach. This is
to the other semantic approach (crossover-based). This isshown in Figure 2. These plots confirm our previous findings:
be expected since, as we have discussed in Section Ill, tthee results of evaluating dozens of thousand of nodes in
latter approach executes an exhaustive search via crassotiee referred approach is the result of trying to find, via the
with a maximum number of trials, to find children that arecrossover operator, offspring that are semantically dffie
semantically different from their parents. It is also ieging from their parents over a number of trials (in this study set
to notice how there seems to be a positive correlatioat 20, as indicated in Table I).
between the size of the population and the number of nodes
evaluated by the crossover-semantics based approach. The number of trials used by the CSB approach vary
according to the problem. For instance for the Artificial Ant
One might think that the large number of evaluated nodgmoblem (shown at the top of Figure 2), around three attempts
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Fig. 2. Number of average trials for the crossover-semantised approach required to find semantically different afigpcompared to their parents,
reported for the Artificial Ant Problem (top row), EvenParity Problems (middle row) and for functiodg , F», F3 (bottom row), for each of the three
different combinations of population sizes (PopSize) anchimer of generations (Gen) used: PopSize = 126, Gen = 200nftest-side); PopSize = 250,
Gen = 100 (centre), and PopSize = 500 and Gen = 50 (right-mas}. si

are necessary, regardless of the size of the population sio®, indicating that by having a bigger population size,goe
and number of generations defined. not necessarily imply that it will be easier to find children

semantically different from their parents.
For the Evena-Parity problem, this number varies. When

n = 3 it requires a higher number of trials to find children The same trend is observed for the Symbolic Regres-
that are semantically different from their parents and i desion problems (for clarity purposes, we again only plotted
creases as increases. This is to be expected since there arig , F», F'3, see bottom of Figure 2). That is, the number
more chances to find children that are semantically differeinf trials increases as the population size increases tdd, un
from their parents the larger the number of fithess casescertain limit, though. For example, when using 126 and
used, because as explained in Section Ill, two individua50 individuals, the number of trials is almost double, 9 and
are regarded semantically different if their output ve@dos 18, respectively. This increase in not observed when using
different. What is also interesting to point out in this type250 and 500 individuals, where the number of trials remain
of problems is that, the number of trials increases for theore or less the same when using these two population sizes
Even-4 and Even-5 problems as the population size increagasound 18 trials).



VI. CONCLUSIONS ANDFUTURE WORK [6]

Over the last years, GP systems that explicitly consider
semantics in their mechanism, have demostrated to have a
superior performance compared to a traditional GP approaciﬁ7
In this work, we have presented a simple and computationally
inexpensive approach to use semantics in GP, called semaig}
tics in selection, that eliminates the necessity of, paaépt
evaluating dozens of thousands of nodes during evolution
compared to semantic-based approaches that try to promoi&
semantic diversity at the crossover operator using an expen
sive trial-and error approach (e.g., [10], [11], [20], [R3]
referred in this work as crossover-semantics based agproac

Thus, by using semantics in selection we guarantee th[%]
the computational effort of the GP system remains the same.
To test the efficiency of this approach, we used 14 GP bench-
mark problems, including both continuous- and discretes,
valued fitness functions, and compare the results using a
traditional GP and a crossover-semantics based approach.

The semantics in selection approach proposed in thﬂf.z
paper has shown promising results, in many cases achieving
superior results compared to the crossover-semanticgl base
approach. We will extend and refine our approach to eprm%3
any further benefits. For instance, the comparison semantic
difference used with Boolean problems and the Ant problefa4]
can be adjusted, by using well-define metrics (e.g., Ham-
ming distance). As for the Symbolic Regression problems,
a threhold could be dynamically adjusted depending on tH&d]
progress of the GP search.
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